2000 Vol. 2, No. 24 3949-3952

Preparation of (S)-N-Substituted 4-Hydroxy-pyrrolidin-2-ones by Regioand Stereoselective Hydroxylation with Sphingomonas sp. HXN-200

Dongliang Chang, Bernard Witholt, and Zhi Li*

Institute of Biotechnology, ETH-Zurich, Honggerberg, CH-8093 Zurich, Switzerland. zhi@biotech.biol.ethz.ch

Received October 16, 2000

ABSTRACT

Enantiopure (S)-N-substituted 4-hydroxy-pyrrolidin-2-ones have been prepared for the first time by regio- and stereoselective hydroxylation of the corresponding pyrrolidin-2-ones by use of a biocatalyst. Hydroxylation of 6 and 8 with Sphingomonas sp. HXN-200 afforded 68% of (S)-7 in >99.9% ee and 46% of (S)-9 in 92% ee, respectively. Simple crystallization increased the ee of (S)-9 to 99.9% in 82% yield.

Optically active 4-hydroxy-pyrrolidin-2-one and its N-substituted derivatives are useful intermediates for the preparation of several pharmaceuticals. The (S)-enantiomers, for example, can be used in the synthesis of an oral carbapenem antibiotic CS-834¹ 1 and nootropic drug (S)-Oxiracetame² 2; the (R)-enantiomers can be used in the preparation of an antidepressant agent (R)-Rolipram³ 3, anticonvulsant (R)- γ -amino- β -hydroxybutyric acid (GABOB)^{4,5} 4, and antihyperlipoproteinemic L-Carnitine (vitamin B_T)⁵ 5.

Several methods for synthesis of optically active 4-hydroxy-pyrrolidin-2-one and its *N*-substituted derivatives have

been developed, but each has one or more drawbacks: (1) Syntheses via direct cyclization^{4c,6} or cyclization with ammonia⁷ or with alkyl- or aralkylamine⁸ need optically active precursors that cannot be prepared easily. (2) Preparation involving reduction of (S)-N-benzyl-4-hydroxy-pyrrolidin-2,5-dione⁹ is multistep and requires special reagents. (3) Synthesis from (2S,4R)-4-hydroxyproline¹⁰ requires expen-

^{(1) (}a) Miyadera, T.; Sugimura, Y.; Hashimoto, T.; Tanaka, T.; Iino, K.; Shibata, T.; Sugawara, S. *J. Antibiot.* **1983**, *36*, 1034. (b) Miyauchi, M.; Endo, R.; Hisaoka, M.; Yasuda, H.; Kawamoto, I. *J. Antibiot.* **1997**, *50*, 429.

^{(2) (}a) Banfi, S.; Fonio, W.; Allievi, E.; Pinza, M.; Dorigotti, L. Farmaco Ed. Sci. 1984, 39, 16. (b) Almeida, J. F.; Anaya, J.; Martin, N.; Grande, M.; Moran, J. R.; Carballero, M. C. Tetrahedron: Asymmetry 1992, 3, 1431. (3) Mulzer, J.; Zuhse, R.; Schmiechen, R. Angew. Chem., Int. Ed. Engl. 1992, 31, 870.

^{(4) (}a) Jung, M. E.; Shaw, T. J. J. Am. Chem. Soc. 1980, 102, 6304. (b) Krogsgaard-Larsen, P.; Nielsen, L.; Falch, E.; Curtis, D. R. J. Med. Chem. 1985, 28, 1612. (c) Orena, M.; Porzi, G.; Sandri, S. J. Chem. Res., Synop. 1990, 376

⁽⁵⁾ Aube, J.; Wang, Y.; Ghosh, S.; Langhans, K. L. Synth. Commun. 1991, 21, 693.

^{(6) (}a) Kobayashi, S.; Kobayashi, K.; Hirai, K. Synlett 1999, S1, 909. (b) Srairi, D.; Maurey, G. Bull. Soc. Chim. Fr. 1987, 2, 297. (c) Inagaki, S.; Shitara, H.; Hirose, T.; Nohira, H. Enantiomer 1998, 3, 187. (d) Mitsuhashi, S.; Sumi, K.; Moroi, T.; Sotoguchi, T.; Miura, T. EP 0947505 A2, 6 Oct 1999. (e) Nishikawa, M. EP 0844242 A1, 27 May 1998. (f) Furukawa, Y.; Takenaka, K. JP 9031058 A2, 4 Feb 1997. (g) Kobayashi, K.; Fukuhara, H.; Takebayashi, T.; Kawamoto, I. JP 8119935, 14 May 1996. (h) Furukawa, Y.; Shiomi, Y.; Nagao, K. WO 9636603, 21 Nov 1996. (i) Mitsuhashi, S.; Kumobayashi, H. EP 0787718 A1, 6 Aug 1997. (j) Kawamoto, I.; Sugano, O.; Ishikawa, K.; Takebayashi, T. JP 8319271 A2, 3 Dec 1996.

^{(7) (}a) Pellegata, R.; Dosi, I.; Villa, M.; Lesma, G.; Palmisano, G. *Tetrahedron* **1985**, *41*, 5607. (b) Seki, M.; Kondo, K. *Synthesis* **1999**, *5*, 745. (c) Santaniello, E.; Casati, R.; Milani, F. *J. Chem. Res., Synop.* **1984**, 132. (d) Osai, Y.; Ayabe, M.; Aoki, K.; Shimizai, T.; Kobayashi, I. JP 57183756 A2, 12 Nov 1982.

⁽⁸⁾ Kawamoto, I.; Ishikawa, K.; Endo, R.; Takebayashi, T. JP 7324071 A2, 12 Dec 1995.

⁽⁹⁾ Huang, P. Q.; Zheng, X.; Wang, S. L.; Ye, J. L.; Jin, L. R.; Chen, Z. *Tetrahedron: Asymmetry* **1999**, *10*, 3309.

⁽¹⁰⁾ Haeusler, J. Monatsh. Chem. 1987, 118, 865.

sive starting material. (4) Synthesis via photochemical rearrangement of special oxaziridines⁵ occurs with low yield. (5) Resolution of racemic 4-hydroxy-pyrrolidin-2-ones with stereoselective esterase¹¹ is a low-yield process and requires the preparation of the racemates.

Regio- and stereoselective hydroxylation of pyrrolidin-2-ones is the simplest route for preparing optically active 4-hydroxy-pyrrolidin-2-one and its *N*-substituted derivatives. However, regio- and stereoselective hydroxylation on nonactivated carbon atom remains a challenge in synthetic chemistry. On the other hand, biohydroxylation can be a useful tool for this type of transformation. However, selective biohydroxylation of pyrrolidin-2-ones has proven to be very difficult. Hydroxylation of *N*-benzoyl- and *N*-phenylacetyl-pyrrolidin-2-one with *Beauveria sulfurescens* (ATCC 7159), a well-known fungus for hydroxylation, gave only 21% of *N*-benzoyl-4-hydroxy-pyrrolidin-2-one and 5% of *N*-phenylacetyl-4-hydroxy-pyrrolidin-2-one, respectively, in very low ee. Moreover, several byproducts were formed in each case.

(11) Maeda, K.; Inukai, M. JP 10165195 A2, 23 June 1998.

In our previous study on biohydroxylation of pyrrolidines, ^{14a} we found that *Sphingomonas* sp. HXN-200¹⁵ is an excellent biocatalyst for regio- and stereoselective hydroxylation of *N*-substituted pyrrolidines, giving the corresponding optically active 3-hydroxypyrrolidines. Here, we report a simple and practical synthesis of (*S*)-*N*-substituted 4-hydroxy-pyrrolidin-2-ones by hydroxylation of the corresponding pyrrolidin-2-ones with *Sphingomonas* sp. HXN-200 as biocatalyst.

Hydroxylation of **6** and **8** was performed with resting cells of *Sphingomonas* sp. HXN-200 on a 10-mL scale in the exploratory stage. ¹⁶ The reaction was followed by analytical HPLC. ¹⁷ Hydroxylation of **6** and **8** afforded the desired 4-hydroxy products **7** and **9**, respectively. Comparison of the retention time and the UV absorption area at 210 nm with the standards of **6**–**9** suggested the conversion to the products.

As shown in Table 1, hydroxylation of a 2 mM solution of *N*-benzyl-pyrrolidin-2-one **6** with resting cells (4.0 g/L)

Table 1. Hydroxylation of **6** to **7** with Resting Cells (4.0 g/L) of *Sphingomonas* sp. HXN-200

6	glucose	activity ^a	7 (%)					
(mM)	(%)	(U/g CDW)	0.5 h	1 h	2 h	3 h	5 h	
2.0	0	2.6	15	19	22	22	23	
2.0	2	4.4	26	41	62	69	70	
3.0	2	4.6	18	29	49	58	65	
4.0	2	4.1	12	19	36	47	57	
5.0	0	3.0	7.0	8.0	9.0	10	10	
5.0	2	4.3	10	14	24	36	47	

^a Activity was determined over the first 30 min.

of *Sphingomonas* sp. HXN-200 that had been prepared by using octane vapor as sole carbon source^{15b} gave 70% of the desired *N*-benzyl-4-hydroxy-pyrrolidin-2-one **7** as main product¹⁸ in the presence of glucose (2%, w/v) for 5 h. The addition of glucose increased the conversion significantly. This is because the biohydroxylation is cofactor-dependent and the addition of glucose contributed to the intracellular regeneration of cofactors. This effect was also observed in

3950 Org. Lett., Vol. 2, No. 24, 2000

⁽¹²⁾ For reviews see: (a) Reiser, O. Angew. Chem., Int. Ed. Engl. 1994, 33, 69. (b) Barton, D. H. R.; Doller, D. Acc. Chem. Res. 1992, 25, 504. (c) Ostovic, D.; Bruice, T. C. Acc. Chem. Res. 1992, 25, 314. (d) Davis, J. A.; Watson, P. L.; Liebmann, J. F.; Greenberg, A. Selective Hydrocarbon Activation, VCH: New York, 1990. (e) Hill, C. L. Activation and Functionalization of Alkanes; Wiley and Sons: New York, 1989. (f) Shilov, A. V. Activation of Saturated Hydrocarbons by Transition Metal Complexes; Reisel: Boston, 1984.

⁽¹³⁾ For reviews see: (a) Johnson, R. A. In Oxidation in Organic Chemistry; Trahanovsky, W. S., Ed.; Academic Press: New York, 1978; Part C, p 131. (b) Kieslich, K. Microbial Transformation of non-Steroid Cyclic Compounds, Thieme: Stuttgart, 1976; p 365. (c) Holland, H. L. Steroids 1999, 64, 178. (d) Holland, H. L. Organic Synthesis with Oxidative Enzymes; VCH: New York, 1992; Chapter 3, p 55. (e) Holland, H. L. Acc. Chem. Res. 1984, 17, 389.

⁽¹⁴⁾ For recent publications see: (a) Li, Z.; Feiten, H.-J.; van Beilen, J. B.; Duetz, W.; Witholt, B. *Tetrahedron: Asymmetry* 1999, 10, 1323. (b) Hemenway, M. S.; Olivo, H. F. J. Org. Chem. 1999, 64, 6312. (c) Holland, H. L.; Morris, T. A.; Nava, P. J.; Zabic, M. *Tetrahedron* 1999, 55, 7441. (d) Braunegg, G.; de Raadt, A.; Feichtenhofer, S.; Griengl, H.; Kopper, I.; Lehmann, A.; Weber, H. J. *Angew. Chem., Int. Ed.* 1999, 38, 2763. (e) Palmer, C. F.; Webb, B.; Broad, S.; Casson, S.; McCague, R.; Willetts, A. J.; Roberts, S. M. *Bioorg. Med. Chem. Lett.* 1997, 7, 1299. (f) Pietz, S.; Fröhlich, R.; Haufe, G. *Tetrahedron* 1997, 53, 17055. (g) Flitsch, S. L.; Aitken, S. J.; Chow, C. S.-Y.; Grogan, G.; Staines, A. *Bioorg. Chem.* 1992, 27, 81. (h) Lutz-Wahl, S.; Fischer, P.; Schmidt-Dannert, C.; Wohlleben, W.; Hauer, B.; Schmid, R. D. *Appl. Environ. Microbiol.* 1998, 64, 3878.

^{(15) (}a) Sphingomonas sp. HXN-200 was isolated from a waste air filter by Plaggemeier, Th.; Schmid, A.; Engesser, K. at University of Stuttgart. (b) For growth conditions, see ref 14a. (c) This strain is available for scientific researches from the culture collection at Institute of Biotechnology, ETH Zurich, Switzerland.

⁽¹⁶⁾ **General Procedure.** Substrate **6** or **8** (2–16 mM) was added to 10 mL of cell suspension (4.0 g/L) of *Sphingomonas* sp. HXN-200 in 50 mM potassium phosphate buffer (pH 8.0) containing glucose (0–2%, w/v) in a 100 mL shaking flask. The mixture was shaken at 200 rpm and 30 °C for 5 h. Samples (100 μ L) were taken out at different times and mixed with methanol (100 μ L), and the cells were removed by centrifugation. The supernatant was analyzed by HPLC.

⁽¹⁷⁾ HPLC analysis: Hypersil BDS-C18 column (125 mm × 4 mm); UV detection at 210 nm; acetonitrile/10mM potassium phosphate buffer (pH 7.0) 20/80 as eluent; flow at 1 mL/min; retention time 2.7 min for 7, 8.1 min for 6, 2.7 min for 9, and 6.7 min for 8.

⁽¹⁸⁾ N-Benzyl-3-hydroxy-pyrrolidin-2-one was formed as byproduct. Ratio of 7/byproduct is about 5/1.

hydroxylation of a 5 mM solution of **6**; the conversion to **7** at 5 h was increased from 10% to 47% by addition of 2% of glucose. Hydroxylation of 3 and 4 mM solutions of **6** for 5 h gave 65% and 57% of **7**, respectively, with activity of 4.6 and 4.1 U/g CDW (U = μ mol/min, CDW = cell dry weight) in the first 30 min.

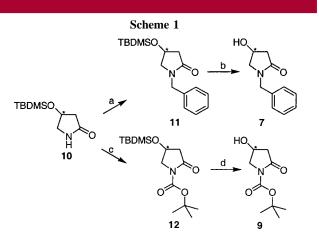
Higher activity was observed for hydroxylation of *N-tert*-butoxycarbonyl-pyrrolidin-2-one **8** with resting cells (4.0 g/L) of *Sphingomonas* sp. HXN-200. As shown in Table 2,

Table 2. Hydroxylation of **8** to **9** with Resting Cells (4.0 g/L) of *Sphingomonas* sp. HXN-200

8 ^a	activity b	9 (%)					
(mM)	(U/g CDW)	0.5 h	1 h	2 h	3h	5h	
2.0	4.4	26	47	67	73	80	
5.0	6.8	16	34	54	66	76	
8.0	8.9	13	28	48	61	71	
10	8.5	10	22	39	52	65	
14	11	9.0	22	40	51	63	
16	9.5	7.0	19	34	45	57	

 a Bioconversion was performed in the presence of glucose (2%). b Activity was determined over the first 30 min.

hydroxylation of a 14 mM solution of 8 gave an activity of 11 U/g CDW and 63% conversion to 9 at 5 h. Interestingly, both conversion and activity are not very much dependent on the starting concentration of substrate, which is advantageous for practical bioconversions; 57–80% of 9 were formed in hydroxylations of 2–16 mM solutions of 8 for 5 h. No byproduct was formed in biohydroxylation of 8, demonstrating the excellent regioselectivity of the biocatalyst.


Preparation of **7** and **9** were performed on a 50-mL scale. ¹⁹ As shown in Table 3, biohydroxylation of **6** (3 mM) with resting cells (4.0 g/L) of *Sphingomonas* sp. HXN-200 for 5 h formed 66% of **7**; 55% (0.32 g/L) of pure product^{20a} was

isolated. For a practical bioconversion, the product concentration has to be increased. This can be easily achieved by using higher starting concentration of **6** and higher cell density. Hydroxylation of a 6 mM solution of **6** with 8.0 and 10 g/L of resting cells of *Sphingomonas* sp. HXN-200 afforded 42% (0.48 g/L) and 68% (0.78 g/L) of **7**, respectively.

Biohydroxylation of **8** (14 mM) with 4.0 g/L of resting cells of *Sphingomonas* sp. HXN-200 afforded **9**^{20b} in 39% yield (1.10 g/L). Similarly, increase of cell density to 8.0 g/L improved the yield to 1.29 g/L (46%). Further improvement was achieved by use of more substrate and more cells: hydroxylation of a 20 mM solution of **8** with 10 g/L of resting cells of *Sphingomonas* sp. HXN-200 gave the pure product **9** in 42% yield (1.69 g/L).

On the basis of our experience, the yield of 7 and 9 can be further improved by performing the hydroxylation in a bioreactor.

For determination of the ee of the biohydroxylation products **7** and **9**, standard (R)- and (S)-**7** and **9** were synthesized from the corresponding known compounds (R)-and (S)-**10**²¹. As shown in Scheme 1, benzylation of (R)-

a. NaH, THF, 0°C, BnCl, 19% of (R)-11; 23% of (S)-11. b. Bu₄NF, THF, 41% of (R)-7; 34% of (S)-7. c. (Boc)₂O, DMAP, Et₃N, 89% of (R)-12; 92% of (S)-12. d. Bu₄NF, THF, 0°C, acetic acid, 8.1% of (R)-9; 16% of (S)-9.

and (S)-10 afforded the corresponding (R)- and (S)-11 in 19% and 23% yield, respectively. Deprotection of 11 gave (R)- and (S)-7 in 41% and 34% yield, respectively. Similarly, treatment of (R)- and (S)-10 with Boc₂O, DMAP, and Et₃N

Org. Lett., Vol. 2, No. 24, **2000**

⁽¹⁹⁾ **Preparation of 7.** To 50 mL of cell suspension (4.0 g/L) of *Sphingomonas* sp. HXN-200 in 50 mM potassium phosphate buffer (pH 8.0) containing glucose (2%, w/v) in a 500 mL shaking flask was added **6** (26.3 mg, 0.15 mmol). The mixture was stirred at 200 rpm and 30 °C. The reaction was followed by analytical HPLC and was stopped at 5 h with 66% conversion. The cells were removed by centrifugation, and the product was extracted into ethyl acetate. The organic phase was dried over Na₂-SO₄, filtered, and evaporated. Purification by column chromatography on silica gel (R_f of **7** = 0.13 and R_f of **6** = 0.50; ethyl acetate/methanol 9:1) afforded 15.8 mg (55%) of **6** as white powder.

^{(20) (}a) **Data for 7.** Mp 107.3-108.0 °C. [α]²⁵_D -34.1° (c 1.00, CHCl₃).9 ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.19 (m, 5 H, aromatic H), 4.52-4.38 (m, 3 H, NCH₂Ph, H-C(4)), 3.48 (dd, 1 H, J = 10.9 and 5.6 Hz, H_A-C(5)), 3.26 (s, br., 1 H, OH), 3.18 (dd, 1 H, J = 10.8 and 2.0 Hz, H_B-C(5)), 2.70 (dd, 1 H, J = 17.4 and 6.6 Hz, H_A-C(3)), 2.43 ppm (dd, 1 H, J = 17.3 and 2.5 Hz, H_B-C(3)). ¹³C NMR (75 MHz, CDCl₃): δ 172.94 (s, CO); 135.97 (s), 128.70 (d), 127.98 (d), 127.60 (d, aromatic C); 64.27 (d, C-4); 55.71 (t, CH₂Ph); 46.32 (t, C-5); 41.14 ppm (t, C-3). MS: m/z 192.1-

⁽M+1, 100), 174.1(9). IR (cm⁻¹): 3401, 3007, 2928, 1682, 1483, 1435, 1262, 1082. (b) **Data for 9.** ¹H NMR (300 MHz, CDCl₃): δ 4.47 (s, 1 H, H-C(4)), 3.88 (dd, 1 H, J = 11.9 and 5.1 Hz, H_A-C(5)), 3.77 (d, 1 H, J = 11.8 Hz, H_B-C(5)), 3.15 (s, 1 H, OH), 2.77 (dd, 1 H, J = 17.7 and 6.1 Hz, H_A-C(3)), 2.43 (d, 1 H, J = 17.7 Hz, H_B-C(3)), 1.52 ppm (s, 9 H, 3 CH₃). ¹³C NMR (75 MHz, CDCl₃): δ 172.8 (s, COO); 150.05 (s, CO); 83.19 (s, C(CH₃)₃); 63.03 (d, C-4); 55.31 (t, C-5); 42.71 (t, C-3); 28.03 ppm (q, CH₃). MS: m/z 202 (M+1, 2), 146.0 (100), 128.0 (13), 113.0 (12), 102.1 (81). IR (cm⁻¹): 3399, 2983, 1782, 1747, 1715, 1370, 1308, 1152, 1078, 1022, 848. (c) **Data for 9** (after crystallization): mp 133.5—134.6 °C. [α]²⁵_D +2.1° (c 1.86, CHCl₃).

⁽²¹⁾ Kanno, O.; Miyauchi, M.; Shibayama, T.; Ohya, S.; Kawamoto, I. J. Antibiot. 1999, 52, 900.

afforded 89% and 92% of (R)- and (S)-12, respectively. Deprotection of 12 gave the corresponding (R)- and (S)-9 in 8.1% and 16% yield, respectively. Here, the yields were not optimized. The structures of (R)- and (S)-7, 9, 11, and 12 were identified by 1 H and 13 C NMR and MS spectra.

The ee of the biohydroxylation products **7** and **9** were determined by HPLC with a chiral column: $^{22} > 99.9\%$ ee (S) for **7** and 90-92% ee (S) for **9**, as shown in Table 3.

Table 3. Preparation of **7** and **9** by Hydroxylation of **6** and **8**, Respectively, with Resting Cells of *Sphingomonas* sp. HXN-200

substrate (mM)	cells (g/L)	product	conversion (%)	yield (%)	ee (<i>S</i>) (%)
6 (3.0)	4.0	7	66	55	>99.9
6 (6.0)	8.0	7	59	42	>99.9
6 (6.0)	10	7	75	68	>99.9
8 (14)	4.0	9	48	39	90
8 (14)	8.0	9	66	46	92
8 (20)	10	9	49	42	90

The ee of **9** was increased from 92% to 99.9% $(S)^{20c}$ in 82% yield by simple crystallization from *n*-hexane/ethyl acetate (2:1).

In summary, we have developed a simple and practical synthesis of (*S*)-*N*-substituted 4-hydroxy-pyrrolidin-2-ones by hydroxylation of the corresponding pyrrolidin-2-ones with *Sphingomonas* sp. HXN-200.

Acknowledgment. We are indebted to Mr. H.-J. Feiten (ETH Zurich) for preparing cells of *Sphingomonas* sp. HXN-200. We thank Dr. J. B. van Beilen (ETH Zurich) for helpful discussion and Mr. Th. Plaggemeier and Prof. K. Engesser (University of Stuttgart) for supplying us with the HXN-200 strain.

Supporting Information Available: Experimental details for biocatalytic preparation of **9**; data of chemically prepared compounds **7**, **9**, **11**, and **12**; ¹H and ¹³C NMR spectra of biohydroxylation products **7** and **9**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL006735Q

3952 Org. Lett., Vol. 2, No. 24, 2000

^{(22) (}a) The ee of **7** was determined by analytical HPLC: column, Chiralpak AS.; eluent, *n*-hexane/2-propanol 4:1; flow, 1.0 mL/min; $T_R(S) = 20.3 \, \text{min}$; $T_R(R) = 30.5 \, \text{min}$. (b) The ee of **9** was determined by analytical HPLC: column, Chiralcel OB-H; eluent, *n*-hexane/2-propanol 7:1; flow, 0.5 mL/min; $T_R(R) = 17.9 \, \text{min}$; $T_R(S) = 22.6 \, \text{min}$.