
Preparation of (S)-N-Substituted
4-Hydroxy-pyrrolidin-2-ones by Regio-
and Stereoselective Hydroxylation with
Sphingomonas sp. HXN-200
Dongliang Chang, Bernard Witholt, and Zhi Li*

Institute of Biotechnology, ETH-Zurich, Honggerberg, CH-8093 Zurich, Switzerland.

zhi@biotech.biol.ethz.ch

Received October 16, 2000

ABSTRACT

Enantiopure (S)-N-substituted 4-hydroxy-pyrrolidin-2-ones have been prepared for the first time by regio- and stereoselective hydroxylation of
the corresponding pyrrolidin-2-ones by use of a biocatalyst. Hydroxylation of 6 and 8 with Sphingomonas sp. HXN-200 afforded 68% of (S)-7
in >99.9% ee and 46% of (S)-9 in 92% ee, respectively. Simple crystallization increased the ee of (S)-9 to 99.9% in 82% yield.

Optically active 4-hydroxy-pyrrolidin-2-one and itsN-
substituted derivatives are useful intermediates for the
preparation of several pharmaceuticals. The (S)-enantiomers,
for example, can be used in the synthesis of an oral
carbapenem antibiotic CS-8341 1 and nootropic drug (S)-
Oxiracetame2 2; the (R)-enantiomers can be used in the
preparation of an antidepressant agent (R)-Rolipram3 3,
anticonvulsant (R)-γ-amino-â-hydroxybutyric acid
(GABOB)4,5 4, and antihyperlipoproteinemicL-Carnitine
(vitamin BT)5 5.

Several methods for synthesis of optically active 4-hy-
droxy-pyrrolidin-2-one and itsN-substituted derivatives have

been developed, but each has one or more drawbacks: (1)
Syntheses via direct cyclization4c,6 or cyclization with am-
monia7 or with alkyl- or aralkylamine8 need optically active
precursors that cannot be prepared easily. (2) Preparation
involving reduction of (S)-N-benzyl-4-hydroxy-pyrrolidin-
2,5-dione9 is multistep and requires special reagents. (3)
Synthesis from (2S,4R)-4-hydroxyproline10 requires expen-
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sive starting material. (4) Synthesis via photochemical
rearrangement of special oxaziridines5 occurs with low yield.
(5) Resolution of racemic 4-hydroxy-pyrrolidin-2-ones with
stereoselective esterase11 is a low-yield process and requires
the preparation of the racemates.

Regio- and stereoselective hydroxylation of pyrrolidin-2-
ones is the simplest route for preparing optically active
4-hydroxy-pyrrolidin-2-one and itsN-substituted derivatives.
However, regio- and stereoselective hydroxylation on non-
activated carbon atom remains a challenge in synthetic
chemistry.12 On the other hand, biohydroxylation can be a
useful tool for this type of transformation.13,14 However,
selective biohydroxylation of pyrrolidin-2-ones has proven
to be very difficult. Hydroxylation of N-benzoyl- and
N-phenylacetyl-pyrrolidin-2-one withBeauVeria sulfurescens
(ATCC 7159), a well-known fungus for hydroxylation, gave
only 21% ofN-benzoyl-4-hydroxy-pyrrolidin-2-one and 5%
of N-phenylacetyl-4-hydroxy-pyrrolidin-2-one, respectively,
in very low ee.6b Moreover, several byproducts were formed
in each case.

In our previous study on biohydroxylation of pyrrolidines,14a

we found thatSphingomonassp. HXN-20015 is an excellent
biocatalyst for regio- and stereoselective hydroxylation of
N-substituted pyrrolidines, giving the corresponding optically
active 3-hydroxypyrrolidines. Here, we report a simple and
practical synthesis of (S)-N-substituted 4-hydroxy-pyrrolidin-
2-ones by hydroxylation of the corresponding pyrrolidin-2-
ones withSphingomonassp. HXN-200 as biocatalyst.

Hydroxylation of6 and8 was performed with resting cells
of Sphingomonassp. HXN-200 on a 10-mL scale in the
exploratory stage.16 The reaction was followed by analytical
HPLC.17 Hydroxylation of 6 and 8 afforded the desired
4-hydroxy products7 and 9, respectively. Comparison of
the retention time and the UV absorption area at 210 nm
with the standards of6-9 suggested the conversion to the
products.

As shown in Table 1, hydroxylation of a 2 mM solution
of N-benzyl-pyrrolidin-2-one6 with resting cells (4.0 g/L)

of Sphingomonassp. HXN-200 that had been prepared by
using octane vapor as sole carbon source15b gave 70% of
the desiredN-benzyl-4-hydroxy-pyrrolidin-2-one7 as main
product18 in the presence of glucose (2%, w/v) for 5 h. The
addition of glucose increased the conversion significantly.
This is because the biohydroxylation is cofactor-dependent
and the addition of glucose contributed to the intracellular
regeneration of cofactors. This effect was also observed in
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(15) (a)Sphingomonassp. HXN-200 was isolated from a waste air filter
by Plaggemeier, Th.; Schmid, A.; Engesser, K. at University of Stuttgart.
(b) For growth conditions, see ref 14a. (c) This strain is available for
scientific researches from the culture collection at Institute of Biotechnology,
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(16)General Procedure.Substrate6 or 8 (2-16 mM) was added to 10
mL of cell suspension (4.0 g/L) ofSphingomonassp. HXN-200 in 50 mM
potassium phosphate buffer (pH 8.0) containing glucose (0-2%, w/v) in a
100 mL shaking flask. The mixture was shaken at 200 rpm and 30°C for
5 h. Samples (100µL) were taken out at different times and mixed with
methanol (100µL), and the cells were removed by centrifugation. The
supernatant was analyzed by HPLC.

(17) HPLC analysis: Hypersil BDS-C18 column (125 mm× 4 mm);
UV detection at 210 nm; acetonitrile/10mM potassium phosphate buffer
(pH 7.0) 20/80 as eluent; flow at 1 mL/min; retention time 2.7 min for7,
8.1 min for6, 2.7 min for9, and 6.7 min for8.

(18)N-Benzyl-3-hydroxy-pyrrolidin-2-one was formed as byproduct.
Ratio of 7/byproduct is about 5/1.

Table 1. Hydroxylation of6 to 7 with Resting Cells (4.0 g/L)
of Sphingomonassp. HXN-200

7 (%)6
(mM)

glucose
(%)

activitya

(U/g CDW) 0.5 h 1 h 2 h 3 h 5 h

2.0 0 2.6 15 19 22 22 23
2.0 2 4.4 26 41 62 69 70
3.0 2 4.6 18 29 49 58 65
4.0 2 4.1 12 19 36 47 57
5.0 0 3.0 7.0 8.0 9.0 10 10
5.0 2 4.3 10 14 24 36 47

a Activity was determined over the first 30 min.
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hydroxylation of a 5 mMsolution of6; the conversion to7
at 5 h was increased from 10% to 47% by addition of 2% of
glucose. Hydroxylation of 3 and 4 mM solutions of6 for 5
h gave 65% and 57% of7, respectively, with activity of 4.6
and 4.1 U/g CDW (U) µmol/min, CDW) cell dry weight)
in the first 30 min.

Higher activity was observed for hydroxylation ofN-tert-
butoxycarbonyl-pyrrolidin-2-one8 with resting cells (4.0 g/L)
of Sphingomonassp. HXN-200. As shown in Table 2,

hydroxylation of a 14 mM solution of8 gave an activity of
11 U/g CDW and 63% conversion to9 at 5 h. Interestingly,
both conversion and activity are not very much dependent
on the starting concentration of substrate, which is advanta-
geous for practical bioconversions; 57-80% of 9 were
formed in hydroxylations of 2-16 mM solutions of8 for 5
h. No byproduct was formed in biohydroxylation of8,
demonstrating the excellent regioselectivity of the biocatalyst.

Preparation of7 and9 were performed on a 50-mL scale.19

As shown in Table 3, biohydroxylation of6 (3 mM) with
resting cells (4.0 g/L) ofSphingomonassp. HXN-200 for 5
h formed 66% of7; 55% (0.32 g/L) of pure product20a was

isolated. For a practical bioconversion, the product concen-
tration has to be increased. This can be easily achieved by
using higher starting concentration of6 and higher cell
density. Hydroxylation of a 6 mM solution of 6 with 8.0
and 10 g/L of resting cells ofSphingomonassp. HXN-200
afforded 42% (0.48 g/L) and 68% (0.78 g/L) of7, respec-
tively.

Biohydroxylation of8 (14 mM) with 4.0 g/L of resting
cells of Sphingomonassp. HXN-200 afforded920b in 39%
yield (1.10 g/L). Similarly, increase of cell density to 8.0
g/L improved the yield to 1.29 g/L (46%). Further improve-
ment was achieved by use of more substrate and more cells:
hydroxylation of a 20 mM solution of8 with 10 g/L of
resting cells ofSphingomonassp. HXN-200 gave the pure
product9 in 42% yield (1.69 g/L).

On the basis of our experience, the yield of7 and9 can
be further improved by performing the hydroxylation in a
bioreactor.

For determination of the ee of the biohydroxylation
products 7 and 9, standard (R)- and (S)-7 and 9 were
synthesized from the corresponding known compounds (R)-
and (S)-1021. As shown in Scheme 1, benzylation of (R)-

and (S)-10afforded the corresponding (R)- and (S)-11 in 19%
and 23% yield, respectively. Deprotection of11 gave (R)-
and (S)-7 in 41% and 34% yield, respectively. Similarly,
treatment of (R)- and (S)-10with Boc2O, DMAP, and Et3N

(19) Preparation of 7. To 50 mL of cell suspension (4.0 g/L) of
Sphingomonassp. HXN-200 in 50 mM potassium phosphate buffer (pH
8.0) containing glucose (2%, w/v) in a 500 mL shaking flask was added6
(26.3 mg, 0.15 mmol). The mixture was stirred at 200 rpm and 30°C. The
reaction was followed by analytical HPLC and was stopped at 5 h with
66% conversion. The cells were removed by centrifugation, and the product
was extracted into ethyl acetate. The organic phase was dried over Na2-
SO4, filtered, and evaporated. Purification by column chromatography on
silica gel (Rf of 7 ) 0.13 andRf of 6 ) 0.50; ethyl acetate/methanol 9:1)
afforded 15.8 mg (55%) of6 as white powder.

(20) (a)Data for 7. Mp 107.3-108.0°C. [R]25
D -34.1° (c 1.00, CHCl3).9

1H NMR (300 MHz, CDCl3): δ 7.35-7.19 (m, 5 H, aromatic H), 4.52-
4.38 (m, 3 H, NCH2Ph, H-C(4)), 3.48 (dd, 1 H,J ) 10.9 and 5.6 Hz, HA-
C(5)), 3.26 (s, br., 1 H, OH), 3.18 (dd, 1 H,J ) 10.8 and 2.0 Hz, HB-
C(5)), 2.70 (dd, 1 H,J ) 17.4 and 6.6 Hz, HA-C(3)), 2.43 ppm (dd, 1 H,
J ) 17.3 and 2.5 Hz, HB-C(3)). 13C NMR (75 MHz, CDCl3): δ 172.94 (s,
CO); 135.97 (s), 128.70 (d), 127.98 (d), 127.60 (d, aromatic C); 64.27 (d,
C-4); 55.71 (t, CH2Ph); 46.32 (t, C-5); 41.14 ppm (t, C-3). MS:m/z192.1-

(M+1, 100), 174.1(9). IR (cm-1): 3401, 3007, 2928, 1682, 1483, 1435,
1262, 1082. (b)Data for 9. 1H NMR (300 MHz, CDCl3): δ 4.47 (s, 1 H,
H-C(4)), 3.88 (dd, 1 H,J ) 11.9 and 5.1 Hz, HA-C(5)), 3.77 (d, 1 H,J )
11.8 Hz, HB-C(5)), 3.15 (s, 1 H, OH), 2.77 (dd, 1 H,J ) 17.7 and 6.1 Hz,
HA-C(3)), 2.43 (d, 1 H,J ) 17.7 Hz, HB-C(3)), 1.52 ppm (s, 9 H, 3 CH3).
13C NMR (75 MHz, CDCl3): δ 172.8 (s, COO); 150.05 (s, CO); 83.19 (s,
C(CH3)3); 63.03 (d, C-4); 55.31 (t, C-5); 42.71 (t, C-3); 28.03 ppm (q,
CH3). MS: m/z202 (M+1, 2), 146.0 (100), 128.0 (13), 113.0 (12), 102.1
(81). IR (cm-1): 3399, 2983, 1782, 1747, 1715, 1370, 1308, 1152, 1078,
1022, 848. (c)Data for 9 (after crystallization): mp 133.5-134.6°C. [R]25

D
+2.1° (c 1.86, CHCl3).

(21) Kanno, O.; Miyauchi, M.; Shibayama, T.; Ohya, S.; Kawamoto, I.
J. Antibiot.1999,52, 900.

Table 2. Hydroxylation of8 to 9 with Resting Cells (4.0 g/L)
of Sphingomonassp. HXN-200

9 (%)8a

(mM)
activityb

(U/g CDW) 0.5 h 1 h 2 h 3h 5h

2.0 4.4 26 47 67 73 80
5.0 6.8 16 34 54 66 76
8.0 8.9 13 28 48 61 71

10 8.5 10 22 39 52 65
14 11 9.0 22 40 51 63
16 9.5 7.0 19 34 45 57

a Bioconversion was performed in the presence of glucose (2%).
b Activity was determined over the first 30 min.

Scheme 1
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afforded 89% and 92% of (R)- and (S)-12, respectively.
Deprotection of12 gave the corresponding (R)- and (S)-9in
8.1% and 16% yield, respectively. Here, the yields were not
optimized. The structures of (R)- and (S)-7,9, 11, and12
were identified by1H and13C NMR and MS spectra.

The ee of the biohydroxylation products7 and 9 were
determined by HPLC with a chiral column:22 >99.9% ee
(S) for 7 and 90-92% ee (S) for9, as shown in Table 3.

The ee of9 was increased from 92% to 99.9% (S)20c in
82% yield by simple crystallization fromn-hexane/ethyl
acetate (2:1).

In summary, we have developed a simple and practical
synthesis of (S)-N-substituted 4-hydroxy-pyrrolidin-2-ones
by hydroxylation of the corresponding pyrrolidin-2-ones with
Sphingomonassp. HXN-200.
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(22) (a) The ee of7 was determined by analytical HPLC: column,
Chiralpak AS.; eluent,n-hexane/2-propanol 4:1; flow, 1.0 mL/min;TR (S)
) 20.3 min;TR (R) ) 30.5 min. (b) The ee of9 was determined by analytical
HPLC: column, Chiralcel OB-H; eluent,n-hexane/2-propanol 7:1; flow,
0.5 mL/min;TR (R) ) 17.9 min;TR (S) ) 22.6 min.

Table 3. Preparation of7 and9 by Hydroxylation of6 and8,
Respectively, with Resting Cells ofSphingomonassp. HXN-200

substrate
(mM)

cells
(g/L) product

conversion
(%)

yield
(%)

ee (S)
(%)

6 (3.0) 4.0 7 66 55 >99.9
6 (6.0) 8.0 7 59 42 >99.9
6 (6.0) 10 7 75 68 >99.9
8 (14) 4.0 9 48 39 90
8 (14) 8.0 9 66 46 92
8 (20) 10 9 49 42 90
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